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This study examines and applies the three statistical value at risk mod-
els including variance-covariance, historical simulation, and Monte 
Carlo simulation in measuring market risk of VN-30 portfolio of Ho 
Chi Minh stock exchange (HOSE) in Vietnam stock market and some 
back-testing techniques in assessing the validity of the VaR perfor-
mance in the timeframe of January 30, 2012–February 26, 2016. The 
models are constructed from two volatility methods of stock price: 
SMA and EWMA throughout the five chosen confidence level: 90%, 
93%, 95%, 97.5%, and 99%. The findings of the study show that the 
differences among the results of three models are not significant. Ad-
ditionally, three VaR (Value at Risk) models have generally the simi-
lar accepted range assessed in both types of back-tests at all confi-
dence levels considered and at the 97.5% confidence level. They can 
work best to achieve the highest validity level of results in satisfying 
both conditional and unconditional back-tests. The Monte Carlo Sim-
ulation (MCS) has been considered the most appropriate method to 
apply in the context of VN-30 portfolio due to its flexibility in distri-
bution simulation. Recommendations for further research and investi-
gations are provided accordingly.  
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1. Introduction 

Risk management is a crucial concern 
in many institutions and countries around 
the world. The financial crises have ex-
posed the uncertainty to investors’ portfo-
lios. The movements of stock price, ex-
change rate, interest rate, and commodity 
price are the sources of market risk that 
may cause potential losses to portfolio’s 
value (Jorion, 2001). According to Duda 
and Schmidt (2009), many banks and in-
stitutions have been taking significant im-
pacts in measuring market risk to set up an 
adequate capital base for their activities. 
Frain and Meegan (1996) had the same 
point of view as laying out several losses 
in banks and corporations in the US. 
Hence, the need for a suitable market risk 
measurement tool that can measure and set 
up an adequate capital base reserve as a 
cushion against potential losses is im-
portant. Cassidy and Gizycki (1997) as-
sumed that value at risk (VaR), nowadays, 
is a widely used technique in measuring 
market risk. VaR measures the potential 
loss that is likely to occur if adverse move-
ments in the market happen. VaR has be-
come a standard measure for financial an-
alysts to quantify market risk and accu-
rately measure the high changes in prices 
due to three key characteristics: a specified 
level of loss, a fixed period of time, and a 
confidence level (Angelovska, 2013). 

Vietnam stock market has been devel-
oping and popular with insider trading, 
herding behavior, and many inexperienced 
individual investors that would create 

more market risk to the players. In such 
context, most investors have been suffer-
ing huge losses due to their ignorance of 
potential losses. Finding a suitable risk 
measurement model is crucial for support-
ing the market risk management of inves-
tors, especially for organizational inves-
tors in Vietnam stock market. Therefore, 
this study attempts to test the appropriate-
ness of the three basic VaR models, in-
cluding variance-covariance method, his-
torical simulation method, and Monte 
Carlo simulation method in the context of 
Vietnam stock market. In this study we 
used the VN-30 stock portfolio to find the 
portfolio’s market risk and examine the 
differences among the three VaR models. 
Moreover, we also adopt some basic back-
testing methods to test the accuracy and 
validity of the three models. The VN-30 
stocks basket of HOSE is chosen because 
it contains top 30 highest capitalization 
stocks (around 80% of HOSE) with the 
trading volume of around 60% of HOSE, 
and attracts attention of both local and for-
eign investors. The research findings pro-
vide empirical evidence of the applicabil-
ity of the three VaR models to measure 
market risk in a weak form capital market 
as Vietnam stock market, and reaffirm the 
accuracy and validity of the three models.  

2. Literature review 

2.1. Definition 

Value at risk (VaR) is a method of 
measuring the maximum potential loss of 
the portfolio in a specific period of time in 
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relative with a confidence level, or it can 
be described as the minimum potential 
loss that the portfolio will be exposed to in 
a given level of significance (Jorion, 
2001). For instance, assuming that the ini-
tial portfolio value is V(0), the current 
value of the portfolio is V, and the chosen 
confidence level is 95%, VaR(95%) is the 
amount of loss in which P[V-V(0) <- 
VaR(95%)] = 5% (Dowd, 2002).  

VaR approaches are adopted based on 
the assumption of normality, with the gen-
eral formula of VaR as follows: 

VaR(1- α) = MV*Z(1- α)*σ 

where 1- α is the level of confidence and Z 
is the standard normal statistical value rel-
ative to 1- α. 

Thus, theoretically, VaR has three pa-
rameters: (i) a specified level of loss: the 
risk exposure amount of current portfolio; 
(ii) a fixed period of time: a time frame 
considered to estimate the loss over; and 
(iii) a confidence level: the proportion of 
days covered by VaR amount (Ange-
lovska, 2013). 

In this study we choose the one day 
holding period to measure VaR with the 
confidence levels of 90%, 93%, 95%, 
97.5%, and 99% to lay out the acceptable 
and valid range from back-testing for VaR 
models.  

2.2.  Value-at-risk approaches 

According to Saita (2007), there are 
three main alternatives of VaR approaches 
that are mostly used for measuring market 

risk: (i) variance-covariance approach; (ii) 
historical simulation; and (iii) Monte 
Carlo simulation. 

2.2.1. Variance-covariance (VC) 
method  

It is the simplest method in VaR calcu-
lations, employed on the assumption of 
market normality (Wiener, 1999). The 
process of this method includes a mapped 
portfolio converted from original assets 
portfolio to contain only asset risk factors 
(as with stock portfolio, stock returns will 
be the risk factor), and a variance-covari-
ance matrix or correlation matrix in pre-
senting the relationship of risk factors. The 
general figure of the conversion between 
original stock portfolio and mapped port-
folio is reported in Table 1. 
Table 1 
The mapping process of a portfolio 

Original Portfolio 

(1) 

Mapped Portfolio 

(2) 

Stock 1 R1 

Stock 2 R2 

….. ….. 

Stock n Rn 

The general formula of variance-covar-
iance method in determining value at risk 
of the portfolio could be expressed as: 

VARp = 𝑉 ∗ 𝐶 ∗ 𝑉
$
 

where 𝑉 (VaR vector) and 𝑉
$
(the trans-

posed vector of VaR vector) of the model 
would be as follows: 
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𝑉= 

𝑉𝑎𝑟	1
𝑉𝑎𝑟	2
… .

𝑉𝑎𝑟	𝑛 − 1
𝑉𝑎𝑟	𝑛

     and      𝑉
$
= 𝑉𝑎𝑟1				𝑉𝑎𝑟2			 … .		𝑉𝑎𝑟	𝑛 − 1						𝑉𝑎𝑟	𝑛  

The correlation matrix would be denoted as symbol C, in which  

C = 
1 𝜌1,2⋯ 𝜌1, 𝑛
⋮ ⋱ ⋮

𝜌1, 𝑛 ⋯ 1
 

It can be transformed into a more specific formula as: 

VARp = (𝑉𝐴𝑅𝑖7) + (𝑉𝐴𝑅𝑖 ∗ 𝑉𝐴𝑅𝑗 ∗ 𝜌𝑖, 𝑗;
<=>

;
>?@

;
>?@ ) 

 with i, j =1, 2, 3…n (i≠j) 

 

However, besides the simple imple-
mentation of use, the variance-covariance 
method can be inappropriate for the empir-
ical distribution. As usually indicated by 
other researchers, the empirical distribu-
tions typically have fat tail relative to nor-
mal distribution, and hence the actual loss 
results usually have greater values as the 
normal estimation. 

2.2.2. Historical simulation (HS) 
method  

The historical simulation is a non-para-
metric method with no data distribution 
assumption needed (Hendricks, 1996). For 
a stock portfolio, this method simply cre-
ates a hypothetical time series of returns of 
the portfolio with the current weights of 
compositions invested in the portfolio. 
The maximum potential loss VaR can be 
directly found at the desired confidence 
level by using historical changes. How-
ever, these portfolio changes are not real 
historical returns of the portfolio, but the 

returns that the portfolio would have been 
experienced if the assets weights remain 
constant over time. 

This method is easy to implement, as-
suming that historical data would be a 
good proxy for future measurement. 
Hence, it would capture all the empirical 
events, and the risk of the portfolio would 
likely be in the past (Rob van den Goorb-
ergh & Vlaar, 1999). Still, the method has 
many limitations if used like the availabil-
ity of data sources or the time frame to 
measure. The historical data could become 
a wrong indicator because the changing 
volatility and correlation through time 
could cause one to ignore the potential risk 
of extreme market movements (Allen et 
al., 2004).  

2.2.3. Monte Carlo Simulation (MCS) 
method 

The Monte Carlo Simulation was de-
veloped to overcome the limitations of his-
torical simulation by having the ability to 
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generate additional observations that are 
consistent with the recent historic events 
to bring the distribution of data into a nor-
mal distribution and finding VaR with the 
relative desired percentile as the historical 
simulation (Sanders & Cornett, 2008). 
Thus, the idea of this method is the central 
limit theorem in which if we have suffi-
ciently large observations of data, our dis-
tribution would be approximated to the 
normal distribution (Anderson et al., 
2011). This method is often used for find-
ing VaR of complex portfolios as multi-
risk factors portfolios or non-linear corre-
lated risk factors portfolio (like options).  

The simple process of the MCS for one 

risk-factor portfolio assumed as a one-
stock portfolio, which followed Jorion 
(2001) and Alexander (2005), is simply to 
simulate the value of that stock with the 
random standard normal variables Z ~ 
N(0,1), which is derived from many draws 
of random numbers between 0 and 1. The 
simulation will be repeated as many times 
as possible (preferably 10000 times), with 
each simulation measured over a period 
time T, in which the time T is divided into 
N small incremental times ΔT and the 
value simulated of the kΔT period is the 
compounding of the (k-1)ΔT simulated 
value (with k=1…N and starting the initial 
value S(0) invested in that stock). The gen-
eral formula of this process is presented as:

S(kΔT)= S(0)* 𝑒𝑥𝑝	[𝜇 ∗ 𝛥𝑇 +H
I?@

	𝑍(𝑘𝛥𝑇)	𝜎 ∗ 𝛥𝑇]; 

This is the Brownian motion process in 
which µ is the mean return of the stock and 
σ is the standard deviation of the stock. 

Nevertheless, for the case of multiple 
stocks portfolio, the correlated factors of 
stocks components should be included to 
truly reflect the simulation. Hence, in ac-
cordance with Best (1998), Allen et al. 
(2004), Alexander (2008), and Dowd 
(2005), the value of each stock in the mul-
tiple-stocks portfolio can be simulated by 
the correlated random standard normal 
variable Фi, as follow:  

Si(kΔT)= Si(0)* 𝑒𝑥𝑝	[𝜇 ∗ 𝛥𝑇 +H
I?@

	Ф𝑖(𝑘𝛥𝑇)	𝜎 ∗ 𝛥𝑇] 

where Si(0) is the initial weighted invest-
ment of the current portfolio in that stock, 
Si(kΔT) is the simulated stock price at a 

specific k(th)ΔT, and Фi(kΔT) = A 

*		

𝑍1(𝑘𝛥𝑇)
𝑍2(𝑘𝛥𝑇)

…
…

𝑍30(𝑘𝛥𝑇)

 with A being the Cholesky 

decomposition factor of correlation matrix 
C, in which C = A*𝐴$. 

After we simulate each stock with those 
correlated random standard variables, we 
will sum all the simulated stocks’ values to 
get the simulated portfolio’s value. 

Yet, besides the fact that the Monte 
Carlo simulation has many advantages 
over the historical simulation, this method 
reveals many limitations such as the error 
in the size of time discrete (ΔT)—the 
Brownian motion process is continuous; 
thus, the smaller the size of ΔT (or the 
larger the size of N), the smaller the er-
ror—and the error from the number of 
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simulation trials because the standard error 
will decrease (or the accuracy will in-
crease) with the square root of the number 
of simulations. 

2.2.4. Discussion of three VaR models 
and previous findings 

In some real market conditions, the var-
iance-covariance and 10000 times Monte 
Carlo simulation have been suggested to 
be less efficient in estimating VaR because 
the actual data distributions mostly have 
fatter tails than the normal ones, and hence 
the actual losses would be most likely 
larger than are estimated. This is also the 
reason why banks and institutions have 
suffered great losses and gone bankrupt 
during the credit crunch. They, in fact, 
have underestimated the risk when looking 
at VaR based on normal market condi-
tions. Thus, a VaR estimation based on the 
fat tail distribution was shown to have bet-
ter forecast and measurement.  

Many previous findings of Linsmeier 
and Pearson (1996), Alžbˇeta Holá (2012), 
Bohdalova (2007), Lupinski (2013), and 
Corkalo (2011) demonstrated the reliance 
of the VaR models in the market on the 
comparison between value at risk amount 
and the actual mark-to-market portfolio 
P/L with the two questions under consid-
eration: (i) is the assumed distribution of 
the models consistent with the actual dis-
tribution of portfolio P/L? and (ii) does the 
number of actual losses exceed the VaR 
amount with expected frequency? For the 
first consideration, as indicated above, 
most authors generally maintain that their 

actual distributions have fatter tails than 
the normal ones, and hence the value of 
variance-covariance method as well as 
Monte Carlo simulation with a large num-
ber of times should be different from that 
of historical simulation. In addition, the 
second suggests that we conduct some 
back-tests to verify the models’ accuracy 
and check the consistency of the frequency 
of losses exceeding VaR.  

2.3.  Back-testing methods 

VaR models have many benefits in 
finding the market risk for our portfolio to 
set up a capital base. However, along with 
the benefits, there are many shortcomings 
of these models, hence raising concerns 
about the accuracy of the VaR estimated 
as well as the frequency of exceptions 
(Campbell, 2005). For this reason these 
risk models need to be regularly validated, 
and the back-testing methods are used to 
test the accuracy of these VaR models 
(Dowd, 2005). It should be essential to 
conduct as many tests as possible because 
the more tests there are to confirm that the 
model is being accepted, the more valid 
that model is. In theory, good VaR models 
are those that could capture the correct fre-
quency of exceptions (or the failure rate) 
and could satisfy the independence of 
those exceptions (Finger, 2005) over the 
timeframe studied. The exceptions are 
those losses observed that have values 
greater than the VaR measured from the 
model. Hence, to follow up we conduct 
two main types of test: unconditional cov-
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erage and conditional coverage. The un-
conditional coverage test includes the 
Kupiec’s proportion of failure test (POF 
test) and the time until first failure test 
(Tuff test) to check the consistency of ac-
tual exceptions frequency observed com-
pared with the frequency suggested by the 
significance level. The conditional cover-
age test includes the independence test and 
joint test, which examine whether excep-
tions occurrences observed are independ-
ent from each other over time.  

2.3.1. Unconditional coverage tests 

2.3.1.1. Kupiec’s proportion of failure 
test (POF test) 

This test is conducted to examine 
whether the frequency of exceptions is in 
line with the model’s significance level 
(Kupiec, 1995), which is α. We have the 
null hypothesis as: 

H0: α= x/T 

where x is the number of exceptions ob-
served over the period of time T (x/T is the 
failure rate). 

According to Jorion (2001), we will 
have our likelihood ratio calculation for 
this test as a statistical value as follows: 

LR(pof)=-2*ln (@QR)STU∗RU

@Q U
S

STU
∗ U
S

U  

which is distributed with the chi square 
test (1 degree of freedom). We will accept 
the null hypothesis if the result of LR(pof) 
< critical value of χ² distribution of a given 
confidence level of 1 degree of freedom. 

2.3.1.2. Time until first failure test 
(Tuff test) 

The idea of this test is to examine the 
failure rate defined by the time until first 
exceptions observed and whether it is in 
line with the suggested model’s failure 
rate of the first exception (Kupiec, 1995). 
Let V be the time until the first exception. 
If our model suggests that α is the proba-
bility of having the exceptions in the time 
V, then we have our relative probability of 
the first exception suggested by the model 
as: α*(1- α)^(V-1).  

Regarding the test, we have the null hy-
pothesis as follows:  

H0: α=1/V 

Moreover, with the likelihood ratio cal-
culations as:  LR (tuff) = -

2*ln R∗(@QR)VTW
W
V∗(@Q

W
V)
VTW , distributed with chi 

square of 1 degree of freedom, we accept 
the model if the value of LR(tuff) is smaller 
than the critical value of χ² distribution of 
a given confidence level with 1 degree of 
freedom. 

2.3.2. Conditional coverage tests 

2.3.2.1. Independence test 

In this test our primary aim is to capture 
whether the occurrence of today’s excep-
tion is dependent on the previous day’s ex-
ception. This test is used to detect cluster-
ing problems in VaR measurements of the 
model. The clustering problems occur 
when the model could not adapt to the new 
situations of the market or the new volatil-
ities and correlations.  

We set up for this test a deviation indi-
cator (It) and: 
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I(t)= 1 if VaR is exceeded; and 

I(t) = 0 if VaR is not exceeded 

Let T(i,j) be the number of days and as-
suming that condition j occurs today and 
that condition i occurs on the previous day. 

(i or j equals 0 or 1, depending on each 
case). 

We construct a 2x2 contingency table 
of exception as follow: 

Table 2 
Contingency table of exceptions with conditional and unconditional occurrences 

 Conditional 
Unconditional 

Previous day 

j           i I(t-1)=0 I(t-1)=1 SUM 

 

Today 

I(t)=0 

 

I(t)=1 

T(0,0) T(1,0) 

 

T(0,1) T(1,1) 

T(0,0)+T(1,0) 

 

T(0,1)+T(1,1) 

 T(0,0)+T(0,1) T(1,0)+T(1,1) N 

Let pi,1 be the probability of having an 
exception today on the conditional state i 
occurring on the previous day: 

P(0,1)= $(X,@)
$ X,X Y$(X,@)

; P(1,1)= $(@,@)
$ @,X Y$(@,@)

 ; 

P= $ X,@ Y$(@,@)
H

 with N= T(0,0)+T(0,1)+ 

T(1,0)+T(1,1) 

If the exception that occurs today is not 
dependent on the previous day occur-
rences: 

P(0,1)= P(1,1)= P ( or the uncondi-
tional probability equals the conditional 
probability). 

The relevant test statistics of independ-
ence is the likelihood ratio suggested by 
Christoffersen (1998) as: 

LR(ind)= -2*ln (@QZ)S [,[ \S(W,[)∗ZS [,W \S(W,W)

@QZ(X,@) S([,[)∗Z X,@ S([,W)∗ @QZ(@,@) S(W,[)∗Z(@,@)S(W,W)
 

distributed with chi square distribution 
of 1 degree of freedom.  

This is the likelihood-ratio under the 
null hypothesis that the exceptions are in-
dependent across the days (Jorion, 2001). 
LR(ind) will be distributed with the chi 
square of 1 degree of freedom. Thus, we 
also conclude that the exceptions’ occur-
rences are independent if the value of 
LR(ind) is smaller than the critical value of 
χ² distribution of a given confidence level 
with 1 degree of freedom. 

2.3.2.2. Joint test 

The joint test (Christoffersen, 1998) is 
the combination of POF tests [LR(pof)] 
and independence test [LR(ind)]. We have 
the conditional likelihood-ratio, LR(cc), 
which captures both the frequency of VaR 
and independence of the exception as fol-
lows: 

LR (cc) =LR (pof)+ LR(ind), 
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with chi square distribution with 2 degrees 
of freedom.  

We accept the results if the value of LR 
(cc) is smaller than the critical value of χ² 
distribution of the given confidence level 
with 2 degrees of freedom. 

3. Methodology 

3.1.  Data collection 

The data of VN30 was collected for the 
whole 4 years from January 30, 2012 
through February 26, 2016 (1016 days of 
timeframe). All the stock basket composi-
tions of VN-30 during the timeframe were 
gathered. Sources of data and changing 
compositions of VN-30 are available on 
websites (hsx.vn, cafef.vn, vietstock.vn). 
We assumed that our portfolio investment 
would be VND100,000,000.  

As a matter of fact, the VN-30 stock 
basket compositions change every six 
months due to the selection of new quali-
fied stocks in the basket. However, a 
changing composition would make it hard 
to define the portfolio volatility through-
out the whole period of time. Hence, we 
develop some specific assumptions of 
weights and stock components for our vol-
atility and VaR calculations, and suggest 
denoting i to represent 30 positions in VN-
30 and have stock 1,… , stock 30, accord-
ingly. Each stock i has its own historical 
rate of returns in that position throughout 
the whole timeframe and the weight i (Wi) 
of that position. Each weight i is the aver-

age value of market capitalization propor-
tions in that position throughout the 
timeframe. Thus, all the data of stocks fea-
ture changes in every six-month period at 
the position i in the timeframe, and the 
market capitalization value can be calcu-
lated in each period at that position with 
the changing stock price in that period. 
Then, we divide market capitalization at 
the position i for the sum of the whole bas-
ket’s market capitalization to find the pro-
portion of that stock in the basket at the 
position i across the time. Next, we take 
the average of those proportions’ values 
through the whole timeframe at the posi-
tion i to find the weight i (Wi) for investing 
in that relative position i of the portfolio.   

Following the Resolution of HSX 
(2012) in choosing VN-30 stocks, we cal-
culate the market capitalization of one 
stock as the product of its stock price, 
number of stock outstanding, the free float 
rate, and the limit percentage of market 
capitalization allowed of that stock in the 
basket. Hence, the general formula is: 

Market Cap. Of Stock = (price of stock) 
* (number of stock outstanding) * (free-
float ratio) * (limit percentage of market 
capitalization allowed) 

By using this method we feasibly find 
the volatility of VN-30 portfolio during 
2012–2016 through the correlation matrix 
of standard deviations between the stock i 
(i= 1,2…30). This method can work more 
accurately if the change in the market cap-
italization proportion at the specific posi-
tion i throughout the time is not much.  
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3.2.  Calculation process 

The VaR measurement is performed 
using 5 confidence levels: 99%, 97.5%, 
95%, 93%, and 90%. According to 
Nieppola (2009) and Dowd (2005), these 
confidence levels can enhance the power 
of the model in balancing type I and type 
II errors.  

For the matter of interest, we employ 
two types of volatility in measuring VaR 
of VN-30: simple moving average (SMA) 
and exponential weighted moving average 
(EWMA). 

First, SMA is based on the assumption 
of available observations with equal 
weights of volatility throughout the time: 

σ = ]^Q] _`
UaW

;Q@
 for one day volatility, the 

SMA covariance between two assets is: 

Cov(Ri,Rj)= ]>,^Q]> ∗(]<,^Q]<)`
UaW

;Q@
 (Saita, 

2007). 

Second, EWMA is adopted to assign 
more weights to the more recent volatility, 
which accurately reflects new changes’ ef-
fects of market conditions:   

σ(t,n) =   	bUTW∗	]cTU_`
UaW

	bUTW`
UaW

 

where σ(t,n) is the volatility of the stock at 
time t with a sample of n returns and λ is 
the decay factor equaling 0.94 for one-day 
time horizon (RiskMetrics-Technical 
Document, 4e, 1996).  

- Thus, the EWMA covariance between 
two assets is:  

Cov(Ri, Rj)=  (@Q	b)	
(@Qb`)

* 𝜆^Q@ ∗;
^?@

𝑅>,eQ^ ∗ 𝑅<,eQ^  

Source: Saita (2007) 

3.2.1. Variance-covariance method 

We adopt this technique, taking the fol-
lowing steps: 

- Transfer the original portfolio into a 
mapped portfolio which contains 30 
stocks’ returns as the risk factors. 

- Find the standard deviation of each 
stock using SMA and EWMA approaches. 

- Find covariance of stock returns from 
SMA volatility and EWMA volatility. 

- Find standard deviation of the whole 
portfolio through covariance found from 
the two methods of volatility:  

σp  = ∗ 𝑤𝑖 ∗ 𝑤𝑗 ∗ 𝐶𝑜𝑣(𝑅𝑖, 𝑅𝑗)iX
<?@

iX
>?@ ; 

i,j=(1,2,3…30). 

- Find VaR of the portfolio: VARp = 
MV*Z(1- α)* σp, where MV is the current 
portfolio’s value and Z(1- α) is the stand-
ard variable relative to confidence level 
(1- α). 

3.2.2. Historical simulation 

There are four steps to be followed: 

- Collect the data and find the historical 
returns of stocks for the simulation for the 
period of 2012–2016: 

Ri,t= Ln( Pi,t/Pi,(t-1) ) 

where Ri,t is the return of the stock and Pi,t 
is the price of stock i at the end of day t (i= 
1, 2, 3…30). 

- Find the daily historical return of the 
whole portfolio: 

Rp,t = αp + 𝑤𝑖 ∗ 𝑅𝑖, 𝑡	iX
>?@  
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where Rp,t is the return of the whole port-
folio at the end of day t (i= 1, 2, 3…30).  

- Run the simulation of historical daily 
changes of the portfolio by multiplying the 
total current value of the investment with 
each of historical portfolio’s returns.  

- Sort these historical value changes of 
the simulation in a descending order, cre-
ate a distribution of value changes, and 
find the value at risk at the certain percen-
tile desired.  

3.2.3. Monte Carlo simulation 

Given this technique, a few more steps 
are to be considered: 

Find the initial weighted value invest-
ment for each stock: 

Si(0) = 100,000,000 * Wi;
 i=(1,2…30) 

Find the mean returns of each stock in 
the timeframe chosen by day and its one-
day standard deviation µl and 𝜎>.  

As the larger the N, the better the 
model, we prefer to use N= 270 incre-
ments of 1 day, and divide the trading 
hours per day into minutes. The trading 
hours of stocks on HOSE are 9 a.m.–
11:30a.m. and 13p.m.–15p.m. (i.e. 4.5 
hours per day or 270 minutes per day). 
Hence, we have ΔT= 1/270. 

Find the mean returns and standard de-
viation of each stock for one unit of incre-
mental time ΔT: 

Ri(ΔT)= µl/270; i= (1,2…30) 

σl(ΔT)= σl *(1/ 270); 

Estimate the correlation matrix C of the 

portfolio to define the Cholesky decompo-
sition factor with C= A*𝐴$: 

A1,1 =  𝐶1,1; 

Ai,1 = t>,@
u@,@

 ; for i=2, 3…30; 

Ai,i = 𝐶𝑖, 𝑖 − 𝐴𝑖, 𝑝7>Q@
Z?@  ; for i= 2, 

3,… 30; 

Ai,j = @
u<,<

 * 𝐶𝑖, 𝑗 − 	 𝐴𝑖, 𝑝 ∗<Q@
Z?@

𝐴𝑗, 𝑝 ; for i > j and j ≥ 2 

We create an appropriate (30x30) ma-
trix A to find the correlated random stand-
ard normal variable Фi. 

Find the correlated random standard 
normal variable Фi for the relative 30 
stocks with the matrix A, which has just 
been identified and a vector of random 
standard normal variables Zi(kΔT), which 
is inversely derived from random numbers 
between 0 and 1, as follow 

Фi (kΔT)  = A *		

𝑍1 𝑘𝛥𝑇
𝑍2 𝑘𝛥𝑇

…
…

𝑍30 𝑘𝛥𝑇

  = 

𝐴𝑖, 𝑗 ∗ 𝑍𝑗 𝑘𝛥𝑇>
<?@ ,	 

𝑤𝑖𝑡ℎ k = 1,2…270 and i, j = 1, 2, 3…30 

Then, we have the relative Ф1(kΔT), 
Ф2(kΔT) …Ф30(kΔT) for stock 1, stock 
2…stock 30, respectively. 

Repeat Step 6 with 270 times of draws 
(k=1,2…270) from a normal distribution 
of N(0,1) to find the vector of standard 
normal variables Zi(kΔT) for each unit of 
incremental time ΔT and create Фi(kΔT) 
for 270 incremental times ΔT of one day 
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simulation.  

To create simulated stock returns 
which are normally distributed with the 
mean of 𝑅𝑖(𝛥𝑇) and standard deviation of 
𝜎>(ΔT), simulate the stock’s value with the 
relative correlated random standard nor-
mal variable Фi(kΔT) periodically: 

Ri(kΔT)= 𝑅𝑖(𝛥𝑇) + 𝜎>(𝛥𝑇) ∗ Ф𝑖(𝑘𝛥𝑇), 
with k= (1,2,3….270) and Ri(k) is the stock 
return generated with Z(kΔT). 

Si(kΔT)= Si(0)* 𝑒𝑥𝑝	[𝑅𝑖(𝛥𝑇) +H
I?@

	Ф𝑖(𝑘𝛥𝑇)	𝜎>(𝛥𝑇)]. 

Calculate the simulated portfolio value 
at the end of the day as the sum of 30 
stocks’ value investment simulated at 
k=270: 

Vp = S1(270ΔT) + S2(270ΔT) +…+ 
S30(270ΔT) 

where Vp is the simulated portfolio value. 

Repeat the simulation of 30 stocks in 
Step 8 with their relative correlated ran-
dom standard normal variable Ф𝑖(𝑘𝛥𝑇) 
for 10000 times to create 10000 scenarios 
of tomorrow’s potential 30 stocks’ values 
and find the relative 10000 simulated port-
folio values as in Step 9.   

Find the changes of each simulated sce-
nario by (Vp - 100,000,000VND), and 
thus we have 10000 scenarios of tomor-
row’s changes in portfolio value.  

Arrange these changes in an order and 
find VaR with the desired level of confi-
dence, similarly defined with the historical 

simulation approach. 

3.3.  The back-testing process 

For the back-tests, we employ each 
method to back-test the results of VaR 
models in order to accept or reject the 
model based on the critical value of statis-
tical test introduced above and throughout 
5 chosen confidence levels. In general, the 
process can be generalized as follows: 

Select a significance level in order to 
estimate the critical value related to the 
null hypothesis being true. 

Calculate the likelihood ratios of each 
method (or statistical value) and compare 
them to the relative critical value with rel-
ative degrees of freedom for 5 confidence 
levels. 

If the result of ratios (or calculated sta-
tistical value) is larger than the critical 
value of significant level with chi-square 
distribution with relative degree of free-
doms, the VaR result is rejected, or it is ac-
cepted otherwise. 

4. Results and discussion 

4.1.  VaR results 

In general, changes in the proportion of 
market capitalization at a specific position 
i through time t are not much. The weight 
i for each position i in the portfolio is cal-
culated, and the results are as follow: 
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Table 3  
Average weight distribution of Stock 1–Stock 30 from the highest to smallest weight 

Stock AVG. Weight AVG. Return 

1 12.200% -0.008% 

2 10.670% 0.065% 

3 9.576% 0.026% 

4 7.748% 0.093% 

5 6.445% 0.012% 

6 5.729% 0.104% 

7 5.456% -0.016% 

8 4.639% -0.054% 

9 4.334% 0.005% 

10 3.849% 0.049% 

11 3.431% 0.137% 

12 2.821% 0.090% 

13 2.639% -0.002% 

14 2.468% 0.010% 

15 2.108% 0.006% 

16 1.997% 0.043% 

17 1.784% -0.011% 

18 1.681% 0.151% 

19 1.474% 0.072% 

20 1.260% 0.044% 

21 1.154% 0.065% 

22 1.028% 0.039% 

23 0.972% 0.075% 

24 0.895% 0.051% 

25 0.785% 0.131% 

26 0.722% -0.064% 

27 0.654% -0.048% 
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Stock AVG. Weight AVG. Return 

28 0.586% 0.073% 

29 0.505% -0.124% 

30 0.391% -0.006% 

Volatilities of the portfolio calculated using SMA and EWMA methods are presented 
in Tables 4 and 5 as below:  

Table 4 
Portfolio’s SMA-volatility 

Portfolio Variance 
(SMA) 

Portfolio STD. 
(SMA) 

0.000126812 0.011261077 

Table 5 
Portfolio’s EWMA-volatility 

Portfolio Variance 
(EWMA) 

Portfolio STD. 
(EWMA) 

0.000117506 0.010840036 

 

The difference between the results of 
two portfolio’s volatilities exists. How-
ever, the difference is very small, or the 
two results are approximately equal. 
Hence, it is suggested that the VaR results 
measured in the same model for a given 

confidence level would be the same under 
any of these types of volatility used, and 
similar back-test results are also obtained. 
The VaR results of 3 models throughout 5 
confidence levels with 2 types of volatility 
are shown in Table 6. 

Table 6 
VaR results 

 SMA EWMA 

 Historical Simula-
tion 

Variance-Covari-
ance 

Monte Carlo 
Simulation 

Historical Simu-
lation 

Variance-Covari-
ance 

Monte Carlo 
Simulation 

99.00% (3,305,720.87) (2,619,718.35) (2,563,666.35) (3,305,720.87) (2,521,769.48) (2,445,310.79) 

Exceptions (x) 10.00 22.00 22.00 10.00 22.00 25.00 

x/T 0.01 0.02 0.02 0.01 0.02 0.02 

97.50% (2,434,051.12) (2,207,130.62) (2,120,234.22) (2,434,051.12) (2,124,608.02) (2,047,539.13) 

Exceptions (x) 25.00 31.00 34.00 25.00 34.00 40.00 
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 SMA EWMA 

 Historical Simula-
tion 

Variance-Covari-
ance 

Monte Carlo 
Simulation 

Historical Simu-
lation 

Variance-Covari-
ance 

Monte Carlo 
Simulation 

x/T 0.02 0.03 0.03 0.02 0.03 0.04 

95% (1,773,356.90) (1,852,282.40) (1,794,474.97) (1,773,356.90) (1,783,027.26) (1,700,122.70) 

Exceptions (x) 52.00 49.00 52.00 52.00 52.00 55.00 

x/T 0.05 0.05 0.05 0.05 0.05 0.05 

93% (1,535,748.08) (1,661,899.70) (1,608,279.30) (1,535,748.08) (1,599,762.79) (1,527,358.64) 

Exceptions (x) 67.00 56.00 61.00 67.00 62.00 67.00 

x/T 0.07 0.06 0.06 0.07 0.06 0.07 

90% (1,234,030.91) (1,443,165.14) (1,379,677.99) (1,234,030.91) (1,389,206.52) (1,322,558.00) 

Exceptions (x) 101.00 77.00 81.00 101.00 80.00 91.00 

x/T 0.10 0.08 0.08 0.10 0.08 0.09 

In Table 6, from 90% to 99% confi-
dence levels, we find that our VaR results 
generated from the three models are not 
significantly different from each other for 
a given confidence level, especially for the 
variance-covariance and Monte Carlo sim-
ulation results. However, at the 95% con-
fidence level, all the models’ results are 
approximately similar, but the difference 
among them becomes larger as we move 
further away from the 95% point. As we 
move closely to 99%, the values of vari-
ance-covariance and Monte Carlo simula-
tion are smaller than of the historical sim-
ulation. The opposite outcome occurs as 
we move closely to 90%. The reasons for 
this could be as follows: 

The historical simulation is found from 
the real past movements of the portfolio, 
and hence the model’s results obviously 
capture merely the same failure rate ob-

served. Meanwhile, the variance-covari-
ance and Monte Carlo simulation with 
10000 simulations extract VaR from a nor-
mal condition distribution. For this reason 
the values of VC and MCS are the most 
approximate while the historical simula-
tion has a little different record from the 
other two. 

The actual distribution of the portfolio 
data has a positive kurtosis of (2.7323), 
having a fatter tail than the normal distri-
bution. Thus, the 95% point seems to be 
intersection of the actual data distribution, 
and the normal data distribution is as-
sumed because all the models’ results are 
most approximate at this 95% confidence 
level. A fatter tail means greater actual 
losses at the left-end tail (95–99% and 
more) of the distribution comparing to the 
losses measured with normal market con-
ditions.   
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4.2.  Comparisons with previous find-
ings 

The similarity between our findings 
and those of previous studies is that the 
distribution of the empirical data has a 
positive kurtosis, i.e. a fatter tail than a true 
normal distribution. As a result, the VaR 
of historical simulation is higher than 
those estimated by both the variance-co-
variance and Monte Carlo simulation 
methods as the confidence level corre-
sponds to the left-end tail (close to 99%) 
of the distribution. 

However, the difference of our findings 
from those of earlier investigation is that it 
is more likely for the VaR of the Monte 
Carlo simulation to approximate that of 
the variance-covariance method than that 
of the historical simulation. Some re-
searchers have used 100 times of simula-
tion; the Monte Carlo simulation’s results, 

thus, approximate those of the historical 
simulation. 

4.3.  Back-test results  

The back-tests are done for 5 chosen 
confidence level, including 99%, 97.5%, 
95%, 93%, and 90%, throughout 3 models 
under both types of volatilities used. In 
general, the back-tests’ results of 3 models 
from 2 methods of volatilities are similar. 
Below are the results of each one. 

4.3.1. Kupiec’s proportion of failure 
(POF) test  

The POF test shows that the most ac-
ceptable range of the test is around the 
95% confidence level and the rejected re-
sults of the variance-covariance and 
Monte Carlo simulation method at the 
99% and 90% confidence levels. The his-
torical simulation results are all accepted 
and presented in Table 7.  

 Table 7 
POF test’s results 

 POF Test (SMA) POF Test (EWMA) 

	
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

99%             

LR(POF) 0.00255847 10.45361826 10.45361826 0.002558467 10.45361826 15.56090087 

Critical value  6.6348966 6.634896601 6.634896601 6.634896601 6.634896601 6.634896601 

Conclusion Accepted Rejected Rejected Accepted Rejected Rejected 

97.50%       

LR(POF) 0.00649404 1.184475294 2.704450666 0.006494039 2.704450666 7.346670145 

Critical value  5.02388619 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 

Conclusion Accepted Accepted Accepted Accepted Accepted Rejected 
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 POF Test (SMA) POF Test (EWMA) 

	
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

95%       

LR(POF) 0.02961839 0.067901198 0.029618393 0.029618393 0.029618393 0.356353943 

Critical value  3.84145882 3.841458821 3.841458821 3.841458821 3.841458821 3.841458821 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

93%       

LR(POF) 0.26135833 3.710777531 1.62164719 0.261358332 1.310703 0.261358332 

Critical value  3.28302029 3.283020287 3.283020287 3.283020287 3.283020287 3.283020287 

Conclusion Accepted Rejected Accepted Accepted Accepted Accepted 

90%       

LR(POF) 0.00394392 7.161285268 4.952349795 0.003943917 5.463561327 1.268913099 

Critical value  2.70554345 2.705543454 2.705543454 2.705543454 2.705543454 2.705543454 

Conclusion Accepted Rejected Rejected Accepted Rejected Accepted 

In Table 7 there are still some unex-
pected accepted results of EWMA-MCS at 
90% and rejected results of SMA-VC and 
of EWMA-MCS at 93% and 97.5% re-
spectively. In general, nevertheless, the 
most trustful range of validity lies between 

93% and 97.5% because most of the re-
sults of 3 models from both volatility 
methods are accepted. 

4.3.2. Time until first failure test (Tuff 
test) 

Table 8 
Tuff test’s results 

 Tuff Test Tuff Test 

 
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

99%             

1/V 0.034482759 0.034482759 0.034482759 0.034482759 0.034482759 0.034482759 

Tuff (LR) 1.07345361 1.07345361 1.07345361 1.07345361 1.07345361 1.07345361 

Critical value  6.634896601 6.634896601 6.634896601 6.634896601 6.634896601 6.634896601 
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 Tuff Test Tuff Test 

 
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

97.50%       

1/V 0.034482759 0.034482759 0.037037037 0.034482759 0.037037037 0.090909091 

Tuff (LR) 0.095850586 0.134944633 0.140114136 0.095850586 0.140114136 1.182120926 

Critical value  5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

95%       

1/V 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 

Tuff (LR) 0.315336293 0.315336293 0.315336293 0.315336293 0.315336293 0.315336293 

Critical value  3.841458821 3.841458821 3.841458821 3.841458821 3.841458821 3.841458821 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

93%       

1/V 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 

Tuff (LR) 0.067939789 0.067939789 0.067939789 0.067939789 0.067939789 0.067939789 

Critical value  3.283020287 3.283020287 3.283020287 3.283020287 3.283020287 3.283020287 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

90%       

1/V 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 0.090909091 

Tuff (LR) 0.010386357 0.010386357 0.010386357 0.010386357 0.010386357 0.010386357 

Critical value  2.705543454 2.705543454 2.705543454 2.705543454 2.705543454 2.705543454 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

The results of the Tuff test are incredi-
bly different from those of the Kupiec’s 
POF Test. All the models at all levels of 
confidence are accepted. Furthermore, 
many conclusions (labeled as accepted) do 

not support effectively the observed (1/V): 
Even though the observed probability of 
the exceptions occurrence in the time V is 
different significantly from the suggested 
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model’s failure rate (α), the test still ac-
cepts it. According to Dowd (2005), this 
Tuff test may not work effectively for a 
long timeframe because it only uses the 
time until first exception as an input factor. 
Hence, the longer the timeframe, the more 
exceptions occurrences there are, and after 

that, we ignore the less suitability of the 
first exceptions probability with the failure 
rate. Given our case, it would not be suita-
ble for VN-30 portfolio. 

4.3.3. Independence test 

Table 9 
Independence test’s results 

 SMA- Independence Test EWMA- Independence Test 

 
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

99%       

LR(ind) #NUM! #NUM! #NUM! #NUM! #NUM! 0.153882338 

Critical value 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 

Conclusion      Accepted 

97.5%       

LR(ind) 0.153882338 2.822118853 4.135493351 0.153882338 4.135493351 2.920802126 

Critical value 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 5.023886187 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

95%       

LR(ind) 3.846893281 4.844749089 4.496366291 3.846893281 4.496366291 9.344330576 

Critical value 3.841458821 3.841458821 3.841458821 3.841458821 3.841458821 3.841458821 

Conclusion Rejected Rejected Rejected Rejected Rejected Rejected 

93%       

LR(ind) 8.241998121 8.344533042 6.554636641 8.241998121 7.941979673 9.9872333 

Critical value 3.283020287 3.283020287 3.283020287 3.283020287 3.283020287 3.283020287 

Conclusion Rejected Rejected Rejected Rejected Rejected Rejected 

90%       

LR(ind) 11.38740597 9.664159005 9.782766691 11.38740597 9.782766691 9.829641812 

Critical value 2.705543454 2.705543454 2.705543454 2.705543454 2.705543454 2.705543454 
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 SMA- Independence Test EWMA- Independence Test 

 
Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo 
Simulation 

Conclusion Rejected Rejected Rejected Rejected Rejected Rejected 

At the 99% confidence level, we have 
P(1,1) = 0 and thus do not need to do the 
independence test. For the other confi-
dence levels, there are only the results gen-
erated from VaR models at the 97.5% con-
fidence level, which is accepted, whereas 
the others are all rejected given the inde-
pendence test. There is still one result of 
EWMA-MCS at 99% being accepted. In 

general, the most valid range of this test 
would be at 97.5% confidence level. 

4.3.4. Joint test 

The value of joint test would be the sum 
value of POF test and independence test. 
Accordingly, we have the results as fol-
lows:

Table 10 
Joint test’s results 

 SMA-Joint Test EWMA- Joint Test 

 Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo  
Simulation 

Historical 
Simulation 

Variance-Co-
variance 

Monte Carlo  
Simulation 

99%             

LR(cc) #NUM! #NUM! #NUM! #NUM! #NUM! 15.71478321 

Critical value       9.210340372 

Conclusion No P(1.1), no independence test -->  use 
POF 

No P(1.1), no independence 
test -->  use POF 

Rejected 

97.5%             

LR(cc) 0.160376377 4.006594147 6.839944016 0.160376377 6.839944016 10.26747227 

Critical value  7.377758908 7.377758908 7.377758908 7.377758908 7.377758908 7.377758908 

Conclusion Accepted Accepted Accepted Accepted Accepted Accepted 

95%             

LR(cc) 3.876511674 4.912650287 4.525984685 3.876511674 4.525984685 9.700684519 

Critical value  5.991464547 5.991464547 5.991464547 5.991464547 5.991464547 5.991464547 

Conclusion Accepted Accepted Accepted Accepted Accepted Rejected 



	
110		 Nguyen Quang Thinh & Vo Thi Quy / Journal of Economic Development 24(2) 90-114  	
 

93%       

LR(cc) 8.503356453 12.05531057 8.176283831 8.503356453 9.252682673 10.24859163 

Critical value  5.318520074 5.318520074 5.318520074 5.318520074 5.318520074 5.318520074 

Conclusion Rejected Rejected Rejected Rejected Rejected Rejected 

90%       

LR(cc) 11.39134989 16.82544427 14.73511649 11.39134989 15.24632802 11.09855491 

Critical value  4.605170186 4.605170186 4.605170186 4.605170186 4.605170186 4.605170186 

Conclusion Rejected Rejected Rejected Rejected Rejected Rejected 

The results of Table 10 show the ac-
ceptance range running from 95% to 
97.5% confidence levels of all models, 
which indicates that the VaR model results 
satisfy both the suitable frequency and the 
accepted level of independence. However, 
these joint test results may raise some con-
cerns because even if the results are ac-
cepted (rejected), it may not be true that 
the models’ results satisfy (do not satisfy) 
both POF and independence tests. 
Katsenga (2013) and Campbell (2005) ar-
gued that many of the previous studies also 
have the same problem when it is possible 
for the model to pass the joint test but still 
violate either POF test or independence 
test, or may even pass those two tests but 
still violate the joint test. In our study at 
the 95% confidence level, the join test is 
accepted, but the models violate the inde-
pendence test. For the EWMA–Monte 
Carlo simulation, the joint test is accepted, 
but the POF test is rejected at the 97.5% 
confidence level. The reason is that when 
we do not separate the joint test into POF 
and independence tests, it is impossible to 

know which test is accepted. Typically, as 
the joint test works with chi square of 2 de-
grees of freedom, while POF and inde-
pendence tests work with chi square of 1 
degree of freedom, there are 2 concerns as 
the critical value of 2 degrees of freedom 
does not double the critical value of 1 de-
gree of freedom for 90%–99% confidence 
levels: 

Either of the tests (POF or independ-
ence) would be violated, and still the mod-
els pass the joint test. This is due to the fact 
that one of the two tests’ critical value is 
significantly small, compared to the rela-
tive critical value of 1 degree of freedom; 
hence, when the other critical value is only 
a little greater than the critical value, the 
join test still lays out an accepted conclu-
sion. For example, at the 95% confidence 
level, if the POF’s ratio is 0.032, which is 
accepted, and the independence test’s ratio 
is 3.94, which is rejected, then the sum of 
these two values, which features the join 
test, would be 3.972 and still accepted. 

Another case is that both POF and in-
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dependence tests are accepted, but the rel-
ative joint test is rejected. This happens 
when both statistical ratio value of both 
test is merely below the relative critical 
value of 1 degree of freedom. For exam-
ple, at the 95% confidence level, the statis-
tical ratio value of POF is 3.2 (accepted) 

and of the independence test is 3.5 (ac-
cepted), but the sum of these tests is 6.7, 
thereby leading to the rejection.  

Table 11 reports the chi-squared criti-
cal values of 1 and 2 degrees of freedom. 

Table 11 
Critical values of Chi-square of 1&2 dof 

 1 degree of freedom 2 degrees of freedom 

99% 6.634896601 9.210340372 

97.50% 5.023886187 7.377758908 

95% 3.841458821 5.991464547 

93% 3.283020287 5.318520074 

90% 2.705543454 4.605170186 

In short, one test alone could not be so 
convincing to prove the validity of the 
models’ results, so we should look at all 
back-tests to see the most accepted range 
for the application of VaR models.  

4.4.  Discussion 

Concerning all the back-tests, exclud-
ing the Tuff test, we can see at the 97.5% 
confidence level, the results of three VaR 
models from 2 volatility-methods are pos-
itively supported and accepted by most of 
the back-tests, including POF, independ-
ence, and join tests. Thus, the 97.5% con-
fidence level could be the most valid range 
of the models’ application in VaR determi-
nation. 

Among these three models, each one 
has its own pros and cons, and they all 

have the similar accepted range in both 
types of tests, implying that the power of 
these models would be hard to differenti-
ate. Nevertheless, in the context of market 
condition which is not truly normal, the 
historical simulation and Monte Carlo 
simulation are more preferable. Adopting 
the appropriate model also depends on in-
vestors’ perspective; for our point of view, 
the Monte Carlo simulation would be the 
best due to its flexibility in generating ad-
ditional observations that capture the re-
cent historical events and the ability to ad-
just a number of simulations to create mar-
ket data distribution. 

5. Conclusion 

First, this study investigates and applies 
3 different models to the estimation of the 
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VaR amounts of VN-30 portfolio through-
out the study timeframe in order to check 
the differences among their results and 
whether they are significant. It has been 
found that at the range close to 99% and 
90%, the differences become larger while 
the range of 93%, 95%, and 97.5% reflect 
small differences. 

Next, two types of tests: unconditional 
and conditional coverage tests, including 
totally four back-tests, have been con-
ducted to examine the validity of the VaR 
models in the frequency consistency and 
independence levels. The Tuff test, as in-
dicated, is not appropriate while the other 
back-tests show that the most valid range 
of application is 97.5% confidence level. 
Therefore, it is recommended that inves-
tors find VaR at 97.5% confidence level to 
enhance the validity power of the models. 

In addition, Monte Carlo simulation is 
the most preferable method suggested in 
the context of the market condition which 
is not truly normal due to its flexibility in 
generating observations based on users’ 
viewpoint.  

Finally, the study provides an insight 
into VaR and 3 basic models applied to 
VN-30 stock basket in Ho Chi Minh Stock 
Exchange to see the potential risk of loss 
that historical basket’s movements would 
likely present and the validity of VaR 
measurements based on the study assump-
tions. Hence, it is important that other 
methods be investigated to develop one’s 
own optimal techniques or extend the 
models introduced to many other individ-
ual portfolios and stock exchanges such as 
HNX, HNX-30, etc. 
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